
stix2-validator Documentation
Release 3.1.4

OASIS Open

Jul 25, 2023

Contents:

1 Installation 3

2 Usage 5
2.1 As A Script . 5
2.2 As A Library . 5
2.3 STIX 2 Versions . 6
2.4 Additional Schemas . 6

3 Options 9

4 Checking STIX Content 11
4.1 Mandatory Checks - STIX 2.1 . 13
4.2 Optional Checks - STIX 2.1 . 14

5 Contributing 25
5.1 Setting up a development environment . 25
5.2 Code style . 26
5.3 Testing . 26
5.4 Adding a dependency . 26
5.5 Updating the STIX JSON schemas . 27

6 Indices and tables 29

i

ii

stix2-validator Documentation, Release 3.1.4

The STIX Validator checks that STIX JSON content conforms to the requirements specified in the latest STIX 2
specifications. In addition to checking conformance with the JSON schemas, the validator checks conformance with
requirements that cannot be specified in JSON schema, as well as with established “best practices.” This validator is
non-normative; in cases of conflict with the STIX specification, the specification takes precedence.

The STIX 2 specification contains two types of requirements: mandatory “MUST” requirements, and recommended
“SHOULD” best practice requirements. The validator checks documents against the “MUST” requirements using
JSON schemas. Some of these mandatory requirements cannot be implemented in JSON Schema, however, so the
validator uses Python functions to check them. The “SHOULD” requirements are all checked by Python functions,
and options may be used to ignore some or all of these recommended “best practices.”

The STIX Validator uses the stix2-patterns validator to check that Indicator patterns conform to the STIX Patterning
language and only reference properties valid for the objects in the pattern.

The validator also color-codes its output to make it easier to tell at a glance whether validation passed.

Contents: 1

https://github.com/oasis-open/cti-stix2-json-schemas
https://github.com/oasis-open/cti-pattern-validator

stix2-validator Documentation, Release 3.1.4

2 Contents:

CHAPTER 1

Installation

Note: The STIX 2 validator requires Python 2.7 or 3.4+.

The easiest way to install the STIX 2 validator is with pip:

$ pip install stix2-validator

Note that if you instead install it by cloning or downloading the repository, you will need to set up the submodules
before you install it:

$ git clone https://github.com/oasis-open/cti-stix-validator.git
$ cd cti-stix-validator/
$ git submodule update --init --recursive
$ python setup.py install

3

stix2-validator Documentation, Release 3.1.4

4 Chapter 1. Installation

CHAPTER 2

Usage

2.1 As A Script

The validator comes with a bundled script which you can use to validate a JSON file containing STIX content:

$ stix2_validator <stix_file.json>

2.2 As A Library

You can also use this library to integrate STIX validation into your own tools. You can validate a JSON file:

from stix2validator import validate_file, print_results

results = validate_file("stix_file.json")
print_results(results)

You can also validate a JSON string, and check if the input passed validation:

from stix2validator import validate_string, print_results

stix_json_string = "..."
results = validate_string(stix_json_string)
if results.is_valid:

print_results(results)

If your STIX is already in a Python dictionary (for example if you have already run json.loads()), use
validate_instance() instead:

import json
from stix2validator import validate_instance, print_results

(continues on next page)

5

stix2-validator Documentation, Release 3.1.4

(continued from previous page)

stix_json_string = "..."
stix_obj = json.loads(stix_json_string)
results = validate_instance(stix_obj)
if results.is_valid:

print_results(results)

You can pass a ValidationOptions object into validate_file(), validate_string(), or
validate_instance() if you want behavior other than the default:

from stix2validator import ValidationOptions

options = ValidationOptions(strict=True)
results = validate_string(stix_json_string, options)

2.3 STIX 2 Versions

By default the validator will check content against the latest version of the STIX 2 specification. However, older
versions can be checked with the version option. For example:

$ stix2_validator --version=2.0 <stix_file.json>

or in Python:

options = ValidationOptions(strict=True, version="2.0")
results = validate_string(stix_json_string, options)

2.4 Additional Schemas

The validator uses the STIX 2 JSON schemas as the basis for its validation, but you can also validate with your own
additional schemas. This can help if you want to validate STIX content using extensions or (now deprecated) custom
objects, properties, or observables.

To do this use the --schemas argument:

$ stix2_validator --schemas /path/to/my/schemas <stix_file.json>

or in Python, using schema_dir:

from stix2validator import ValidationOptions

options = ValidationOptions(strict=True, version="2.1", schema_dir="/path/to/custom/
→˓schemas")
results = validate_file("stix_file.json")
print_results(results)

You can see some examples of custom schemas here.

Note: The schema’s filename must match the extension definition id of the extension it describes so
the validator can apply it correctly. For example, a schema defining a new extension with an id of

6 Chapter 2. Usage

https://github.com/oasis-open/cti-stix2-json-schemas
https://github.com/oasis-open/cti-stix-validator/tree/master/stix2validator/test/v21/test_schemas

stix2-validator Documentation, Release 3.1.4

extension-definition--bfaece0b-efa6-4dfa-8248-3d340e2030f8 should be named extension-
definition–bfaece0b-efa6-4dfa-8248-3d340e2030f8.json.

Note: Custom objects and properties using the x_ and x- prefixes have been deprecated in STIX 2.1. However, if
you need a schema for validating them, the validator can parse it as long as the schema’s filename matches the type
name of the STIX object type it should apply to. For example, a schema defining a new property on Indicators should
be named indicator.json. A schema defining a new object type, “my-cool-thing”, would need to be named
my-cool-thing.json.

Note: When using additional schemas, the validator’s built-in schemas are still checked against. Thus custom schemas
only need to contain the properties that differ from the standard.

2.4. Additional Schemas 7

stix2-validator Documentation, Release 3.1.4

8 Chapter 2. Usage

CHAPTER 3

Options

These are the different options that can be set, whether the validator is used as a command-line script or as a Python li-
brary. When using the validator as a library, these options can be passed as parameters to the ValidationOptions
constructor.

Script Library Description
FILES files A whitespace separated list of STIX files or directories of STIX files to

validate.
-r, --recursive recursiveRecursively descend into input directories.
-s SCHEMA_DIR,
--schemas
SCHEMA_DIR

schema_dirCustom schema directory. If provided, input will be validated against
these schemas in addition to the STIX schemas bundled with this script.

--version version The version of the STIX specification to validate against (e.g. “2.0”).
-v, --verbose verbose Print informational notes and more verbose error messages.
-q, --silent silent Silence all output to stdout.
-d DISABLED,
--disable
DISABLED, --ignore
DISABLED

disabled A comma-separated list of recommended best practice checks to skip.
By default, no checks are disabled. Example: –disable 202,210

-e ENABLED,
--enable ENABLED,
--select ENABLED

enabled A comma-separated list of recommended best practice checks to enable.
If the –disable option is not used, no other checks will be run. By default,
all checks are enabled. Example: –enable 218

--strict strict Treat warnings as errors and fail validation if any are found.
--strict-types strict_typesEnsure that no custom object types are used, only those defined in the

STIX specification.
--strict-properties strict_propertiesEnsure that no custom properties are used, only those defined in the

STIX specification.
--no-cache no_cache Disable the caching of external source values.
--refresh-cache refresh_cacheClears the cache of external source values, then during validation down-

loads them again.
--clear-cache clear_cacheClear the cache of external source values after validation.
--enforce-refs enforce_refsEnsures that all SDOs being referenced by SROs are contained within

the same bundle.

9

stix2-validator Documentation, Release 3.1.4

For the list of checks that can be used with the “enabled” or “disabled” options, see the Best Practices page.

10 Chapter 3. Options

CHAPTER 4

Checking STIX Content

The validator will always validate input against all of the mandatory “MUST” requirements from the spec. By default
it will issue warnings if the input fails any of the “SHOULD” recommendations, but validation will still pass. To turn
these “best practice” warnings into errors and cause validation to fail, use the --strict option with the command-
line script, or create a ValidationOptions object with strict=True when using the library.

You cannot select which of the “MUST” requirement checks will be performed; all of them will always be performed.
However, you may select which of the “SHOULD” checks to perform. Use the codes from the table below to enable
or disable these checks. For example, to disable the checks for the report label and tool label vocabularies, use
--disable 218,222 or disabled="218,222". All the other checks will still be performed. Conversely, to
only check that custom property names adhere to the recommended format but not run any of the other “best practice”
checks, use --enable 103 or enabled="103".

Enabling supersedes disabling. Simultaneously enabling and disabling the same check will result in the validator
performing that check.

Some checks access Internet resources to determine valid values for certain properties. For instance, the ‘mime-
type’ check accesses the IANA’s list of registered MIME types. These web requests are cached to conserve band-
width, will expire after one week, and are stored in a file called ‘cache.sqlite’ in the same directory the script is run
from. The cache can be refreshed manually with the --refresh-cache or refresh_cache=True, or cleared
with --clear-cache or clear_cache=True. This caching can be disabled entirely with --no-cache or
no_cache=True.

11

stix2-validator Documentation, Release 3.1.4

12 Chapter 4. Checking STIX Content

stix2-validator Documentation, Release 3.1.4

4.1 Mandatory Checks - STIX 2.1

Name Ensures. . . Errors/Warnings
times-
tamp

timestamps contain sane
months, days, hours, min-
utes, seconds

‘<property>’: ‘<timestamp>’ is not a valid timestamp: <message>
‘<object>’: ‘<property>’: ‘<timestamp>’ is not a valid timestamp: <mes-
sage>
‘<object>’: ‘<extension>’: ‘<property>’: ‘<timestamp>’ is not a valid
timestamp: <message>
‘<object>’: ‘<property>’: ‘<embedded-property>’ is not a valid timestamp:
<message>

times-
tamp_compare

timestamp properties with a
comparison are valid

‘<operand_1>’ (<operand1_value>) must be <comparison_op>
‘<operand_2>’ (<operand2_value)

ob-
serv-
able_timestamp_compare

cyber observable timestamp
properties with a compari-
son requirement are valid

In object ‘<identifier>’, ‘<operand_1>’ (<operand1_value>) must be <com-
parison_op> ‘<operand_2>’ (<operand2_value>)

ob-
ject_marking_circular_refs

that marking definitions do
not contain circular refer-
ences (i.e., they do not refer-
ence themselves in the ‘ob-
ject_marking_refs’ property

‘object_marking_refs’ cannot contain any references to this marking defini-
tion object (no circular references)

gran-
u-
lar_markings_circular_refs

that marking definitions
do not contain circular
references (i.e., they do
not reference themselves
in the ‘granular_markings’
property

‘granular markings’ cannot contain any references to this marking definition
object (no circular references)

mark-
ing_selector_syntax

selectors in granular mark-
ings refer to items which are
actually present in the object

‘<selector>’ is not a valid selector because ‘<index>’ is not a valid index
‘<selector>’ is not a valid selector because ‘<selector_segment>’ is not a
list.
‘<selector>’ is not a valid selector because ‘<selector_segment>’ is not a
property.

ob-
serv-
able_object_references

certain observable object
properties reference the
correct type of object

‘<property>’ in observable object ‘<identifier>’ can’t resolve ‘<embed-
property>’ reference ‘<identifier>’
‘<property>’ in observable object ‘<identifier>’ must refer to an object of
type ‘<type(s)>’

ar-
ti-
fact_mime_type

the ‘mime_type’ property of
artifact objects comes from
the Template column in the
IANA media type registry

the ‘mime_type’ property of object ‘<identifier>’ (‘<mime_type>’) must be
an IANA registered MIME Type of the form ‘type/subtype’.

char-
ac-
ter_set

certain properties of cy-
ber observable objects come
from the IANA Character
Set list.

The ‘path_enc’ property of object ‘<identifier>’ (‘<path_enc>’) must be an
IANA registered character set.
The ‘name_enc’ property of object ‘<identifier>’ (‘<name_enc>’) must be
IANA registered character set.

lan-
guage

the ‘lang’ property of SDOs
is a valid RFC 5646 lan-
guage code

‘<lang>’ is not a valid RFC 5646 language code.

soft-
ware_language

the ‘language’ property of
software objects is a valid
ISO 639-2 language code

The ‘languages’ property of object ‘<identifier>’ contains an invalid code
(‘<lang>’).

pat-
terns

that the syntax of the pattern
of an indicator is valid, and
that objects and properties
referenced by the pattern
are valid. This runs the
cti-pattern-validator (https:
//github.com/oasis-open/cti-
pattern-validator) to check
the syntax of the pattern.

‘<object>’ is not a valid observable type name
Custom Observable Object type ‘<object>’ should start with ‘x-’ followed
by a source unique identifier (like a domain name with dots replaced by
hyphens), a hyphen and then the name
Custom Observable Object type ‘<object>’ should start with ‘x-’
‘<property>’ is not a valid observable property name
Cyber Observable Object custom property ‘<property>’ should start with
‘x_’ followed by a source unique identifier (like a domain name with dots
replaced by underscores), an underscore and then the name
Cyber Observable Object custom property ‘<property>’ should start with
‘x_’

lan-
guage_contents

keys in Language Content’s
‘contents’ dictionary are
valid language codes, and
that the keys in the sub-
dictionaries match the rules
for object property names

Invalid key ‘<key>’ in ‘contents’ property must be an RFC 5646 code
‘<subkey>’ in ‘<key>’ of the ‘contents’ property is invalid and must match
a valid property name

uuid_version_checkthat an SCO with only op-
tional ID Contributing Prop-
erties use a UUIDv4

If no Contributing Properties are present a UUIDv4 must be used

pro-
cess

that process objects use
UUIDv4

A process object must use UUIDv4 in its id

4.1. Mandatory Checks - STIX 2.1 13

https://github.com/oasis-open/cti
https://github.com/oasis-open/cti

stix2-validator Documentation, Release 3.1.4

4.2 Optional Checks - STIX 2.1

Code Name Ensures. . . Errors/Warnings
1 format-checks all 1xx checks are run.

Specifically:
Continued on next page

14 Chapter 4. Checking STIX Content

stix2-validator Documentation, Release 3.1.4

Table 1 – continued from previous page
101 custom-prefix names of custom object

types, properties, observ-
able objects, observable
object properties, and ob-
servable object extensions
follow the correct format

Note: This checks func-
tionality that has been
deprecated and replaced
by extensions. Thus,
this check only runs if
extensions-use (401) is
disabled.
custom object type ‘<ob-
ject>’ should start with ‘x-
’ followed by a source
unique identifier (like a
domain name with dots re-
placed by hyphens), a hy-
phen and then the name.
custom property ‘<prop-
erty>’ should have a type
that starts with ‘x_’ fol-
lowed by a source unique
identifier (like a domain
name with dots replaced
by a hyphen), a hyphen
and then the name.
Custom Observable
Object type ‘<observ-
able_object>’ should start
with ‘x-’ followed by a
source unique identifier
(like a domain name
with dots replaced by
hyphens), a hyphen and
then the name.
Custom Cyber Observ-
able Object extension
type ‘<observable-object-
extension>’ should start
with ‘x-’ followed by a
source unique identifier
(like a domain with dots
replaced by hyphens),
a hyphen and then the
name.
Cyber Observ-
able Object custom
property ‘<observ-
able_object_property>’
should start with ‘x_’
followed by a source
unique identifier (like a
domain name with dots
replaced by hyphens),
a hyphen and then the
name.
Cyber Observable Object
custom property ‘<prop-
erty>’ in the <extension>
extension should start
with ‘x_’ followed by
a source unique (like a
domain name with dots
replaced by hyphens),
a hyphen and then the
name.
Cyber Observable Ob-
ject custom property
‘<property>’ in the <ex-
tension_property> of the
<extension> extension
should start with ‘x_’
followed by a source
unique identifier (like a
domain name with dots
replaced by hyphens),
a hyphen and then the
name.
Continued on next page

4.2. Optional Checks - STIX 2.1 15

stix2-validator Documentation, Release 3.1.4

Table 1 – continued from previous page
102 custom-prefix-lax same as 101 but more le-

nient; no source identifier
needed in prefix

Note: This checks func-
tionality that has been
deprecated and replaced
by extensions. Thus,
this check only runs if
extensions-use (401) is
disabled.
custom object type ‘<ob-
ject>’ should start with ‘x-
’ in order to be compatible
with future versions of the
STIX 2 specification.
custom property ‘<prop-
erty>’ should have a type
that starts with ‘x_’ in
order to be compatible
with future versions of the
STIX 2 specification.
Custom Observable
Object type ‘<observ-
able_object>’ should start
with ‘x-‘.
Custom Observable
Object extension
type ‘<observable-
object_extension>’
should start with ‘x-‘.
Cyber Observable Object
custom property ‘<prop-
erty>’ should start with
‘x_’.
Cyber Observable Object
custom property ‘<em-
bedded_property>’ in the
<property> of the <ob-
ject> object should start
with ‘x_’.
Cyber Observable Object
custom property ‘<prop-
erty>’ in the <extension>
extension should start
with ‘x_’.
Cyber Observable Ob-
ject custom property
‘<property>’ in the
<extension_property>
property of the <exten-
sion> extension should
start with ‘x_’.
Continued on next page

16 Chapter 4. Checking STIX Content

stix2-validator Documentation, Release 3.1.4

Table 1 – continued from previous page
103 uuid-check objects use the recom-

mended versions of UUID
(v5 for SCOs, v4 for the
rest)

Cyber Observable ID
value <identifier> is not a
valid UUIDv5 ID.
Given ID value <iden-
tifier> is not a valid
UUIDv4 ID.

111 open-vocab-format values of open vocabular-
ies follow the correct for-
mat

Open vocabulary value
‘<value>’ should be all
lowercase and use hy-
phens instead of spaces or
underscores as word sepa-
rators.

121 kill-chain-names kill-chain-phase name and
phase follow the correct
format

kill_chain_name
‘<chain_name>’ should
be all lowercase and use
hyphens instead of spaces
or underscores as word
separators.
phase_name
‘<phase_name>’ should
be all lowercase and use
hyphens instead of spaces
or underscores as word
separators

141 observable-object-keys observable object keys
follow the correct format

‘<key_value>’ is not a
good key value. Observ-
able Objects should use
non- negative integers for
their keys.

142 observable-dictionary-
keys

dictionaries in cyber ob-
servable objects follow
the correct format

As a dictionary key,
‘<key_value>’ should be
lowercase.

143 malware-analysis-product malware analysis product
names follow the correct
format

The ‘product’ property
of object ‘<identifier>’
should be all lowercase
with words separated by
dash.

149 windows-process-
priority-format

windows-process-ext’s
‘priority’ follows the
correct format

The ‘priority’ property
of object ‘<identifier>’
should end in ‘_CLASS’.
Continued on next page

4.2. Optional Checks - STIX 2.1 17

stix2-validator Documentation, Release 3.1.4

Table 1 – continued from previous page
150 hash-length keys in ‘hashes’-type

properties are not too long
Object ‘<identifier>’
has a ‘hashes’ dictio-
nary with a hash of type
‘<hash_type>’, which is
longer than 30 characters.
Object ‘<identifier>’ has
an NTFS extension with
an alternate data stream
that has a ‘hashes’ dictio-
nary with a hash of type
‘<hash_type>’, which is
longer than 30 characters.
Object ‘<identifier>’ has
a Windows PE Binary
File extension with a file
header hash of ‘<hash>’,
which is longer than 30
characters.
Object ‘<identifier>’ has a
Windows PE Binary File
extension with an optional
header that has a hash of
‘<hash>’, which is longer
than 30 characters.
Object ‘<identifier>’ has
a Windows PE Binary
File extension with a sec-
tion that has a hash of
‘<hash>’, which is longer
than 30 characters.
Object ‘<identifier>’
hash a ‘hashes’ dictio-
nary with a hash of type
‘<hash_type>’, which is
longer than 30 characters.

2 approved-values all 2xx checks are run.
Specifically:

201 marking-definition-type marking definitions use a
valid definition_type

Marking definition ‘def-
inition_type’ should
be one of: <marking-
definition-type>.
Continued on next page

18 Chapter 4. Checking STIX Content

stix2-validator Documentation, Release 3.1.4

Table 1 – continued from previous page
202 relationship-types relationships are among

those defined in the spec-
ification

‘<object>’ is not a sug-
gested relationship source
object for the ‘<relation-
ship>’ relationship.
‘<relationship>’ is not
a suggested relation-
ship type for ‘<object>’
objects.
‘<object>’ is not a sug-
gested relationship target
object for ‘<object>’ ob-
jects with the ‘<relation-
ship>’ relationship.

203 duplicate-ids objects in a bundle with
duplicate IDs have differ-
ent modified timestamps

Duplicate ID ‘<iden-
tifier>’ has identical
‘modified’ timestamp. If
they are different versions
of the same object, they
should have different
‘modified’ properties,

210 all-vocabs all of the following open
vocabulary checks are run ‘<property>’ contains a value not in

the <vocab_name>-
ov vocabulary.

211 attack-motivation certain property values
are from the attack-
motivation vocabulary

‘<property>’ contains a
value not in the attack-
motivation-ov vocabulary

212 attack-resource-level certain property values are
from the attack-resource-
level vocabulary

‘<property>’ contains a
value not in the attack-
resource-level-ov vocabu-
lary

213 identity-class certain property values are
from the identity-class vo-
cabulary

‘<property>’ contains a
value not in the identity-
class-ov vocabulary

214 indicator-types certain property values are
from the indicator-types
vocabulary

‘<property>’ contains a
value not in the indicator-
types-ov vocabulary

215 industry-sector certain property values are
from the industry-sector
vocabulary

‘<property>’ contains a
value not in the industry-
sector-ov vocabulary

216 malware-types certain property values are
from the malware-types
vocabulary

‘<property>’ contains a
value not in the malware-
types-ov vocabulary

218 report-types certain property values are
from the report-types vo-
cabulary

‘<property>’ contains a
value not in the report-
types-ov vocabulary

219 threat-actor-types certain property values
are from the threat-actor-
types vocabulary

‘<property>’ contains a
value not in the threat-
actor-types-ov vocabulary
Continued on next page

4.2. Optional Checks - STIX 2.1 19

stix2-validator Documentation, Release 3.1.4

Table 1 – continued from previous page
220 threat-actor-role certain property values are

from the threat_actor_role
vocabulary

‘<property>’ contains a
value not in the threat-
actor-role-ov vocabulary

221 threat-actor-sophistication certain property val-
ues are from the
threat_actor_sophistication
vocabulary

‘<property>’ contains a
value not in the threat-
actor-sophistication-ov
vocabulary

222 tool-types certain property values are
from the tool_types vo-
cabulary

‘<property>’ contains a
value not in the tool-
types-ov vocabulary

223 region certain property values are
from the region vocabu-
lary

‘<property>’ contains a
value not in the region-ov
vocabulary

225 grouping-context certain property values are
from the grouping-context
vocabulary

‘<property>’ contains a
value not in the grouping-
context-ov vocabulary

226 implementation-
languages

certain property values are
from the implementation-
languages vocabulary

‘<property>’ con-
tains a value not in
the implementation-
languages-ov vocabulary

227 infrastructure-types certain property values are
from the infrastructure-
types vocabulary

‘<property>’ contains
a value not in the
infrastructure-types-ov
vocabulary

228 malware-capabilities certain property values
are from the malware-
capabilities vocabulary

‘<property>’ contains a
value not in the malware-
capabilities-ov vocabulary

230 processor-architecture certain property values
are from the processor-
architecture vocabulary

‘<property>’ contains a
value not in the processor-
architecture-ov vocabu-
lary

231 malware-result certain property values are
from the malware-result
vocabulary

‘<property>’ contains a
value not in the malware-
result-ov vocabulary
Continued on next page

20 Chapter 4. Checking STIX Content

stix2-validator Documentation, Release 3.1.4

Table 1 – continued from previous page
241 hash-algo certain property values are

from the hash-algo vocab-
ulary

Object ‘<identifier>’
has a ‘hashes’ dictio-
nary with a hash of type
‘<hash_type>’, which
is not a value in the
hash-algorithm-ov vocab-
ulary nor a custom value
prepended with ‘x_’.
Object ‘<identifier>’
has an NTFS extension
with an alternate data
stream that has a ‘hashes’
dictionary with a hash
of type ‘<hash_type>’,
which is not a value in
the hash- algorithm-ov
vocabulary nor a custom
value prepended with
‘x_’.
Object ‘<identifier>’
has a Windows PE Bi-
nary File extension with
a file header hash of
‘<hash_type>’, which is
not a value in the hash-
algorithm- vocabulary nor
a custom value prepended
with ‘x_’.
Object ‘<identifier>’ has a
Windows PE Binary File
extension with an optional
header that has a hash
of ‘<hash_type>’, which
is not a value in the
hash-algorithm-ov vocab-
ulary nor a custom value
prepended with ‘x_’.
Object ‘<identifier>’ has
a Windows PE Binary
File extension with a
section that has a hash
of ‘<hash_type>’, which
is not a value in the
hash-algorithm-ov vocab-
ulary nor a custom value
prepended with ‘x_’.
Continued on next page

4.2. Optional Checks - STIX 2.1 21

stix2-validator Documentation, Release 3.1.4

Table 1 – continued from previous page
243 windows-pebinary-type certain property values

are from the windows-
pebinary-type vocabulary

Object ‘<identifier>’ has
a Windows PE Binary
File extension with a
‘pe_type’ of ‘<pe_type>’,
which is not a value in the
windows-pebinary-type-
ov vocabulary.

244 account-type certain property values are
from the account-type vo-
cabulary

Object ‘<identifier>’is a
User Account Object with
an ‘account_type’ of ‘<ac-
count_type>’, which is
not a value in the account-
type-ov vocabulary.

245 indicator-pattern-types certain property values are
from the pattern-type vo-
cabulary

‘<property>’ contains a
value not in the pattern-
type-ov vocabulary

270 all-external-sources all of the following exter-
nal source checks are run

271 mime-type file.mime_type is a valid
IANA MIME type

The ‘mime_type’ property
of object ‘<identifier>’
(‘<mime_type>’) should
be an IANA registered
MIME Type of the form
‘type/subtype’.

272 protocols certain property values are
valid IANA Service and
Protocol names

The ‘protocols’ property
of object ‘<identifier>’
contains a value (‘<pro-
tocol>’) not in IANA
Service Name and
Transport Protocol Port
Number Registry.

273 ipfix certain property values are
valid IANA IP Flow In-
formation Export (IPFIX)
Entities

The ‘ipfix’ property of
object ‘<identifier>’ con-
tains a key (‘<ipfix>’) not
in IANA IP Flow Informa-
tion Export (IPFIX) Enti-
ties Registry.

274 http-request-headers certain property values
are valid HTTP request
header names

The ‘request_header’
property of object ‘<iden-
tifier>’ contains an
invalid HTTP header
(‘<http_request_header>’).

275 socket-options certain property values are
valid socket options

The ‘options’ property
of object ‘<identi-
fier>’ contains a key
(‘<option>’) that is
not a valid socket option
(SO|ICMP|ICMP6|IP|IPV6|
MCAST|TCP|IRLMP)_*.
Continued on next page

22 Chapter 4. Checking STIX Content

stix2-validator Documentation, Release 3.1.4

Table 1 – continued from previous page
276 pdf-doc-info certain property values are

valid PDF Document In-
formation Dictionary keys

The ‘document_info_dict’
property of object ‘<iden-
tifier>’ contains a key
(‘<key>’) that is not a
valid PDF Document In-
formation Dictionary key.

277 countries certain property values
are valid ISO 3166-1
ALPHA-2 codes

Location ‘country’ should
be a valid ISO 3166-1
ALPHA-2 Code.

301 network-traffic-ports network-traffic objects
contain both src_port and
dst_port

The Network Traffic ob-
ject ‘<identifier>’ should
contain both the ‘src_port’
and ‘dst_port’ properties.

302 extref-hashes external references
SHOULD have hashes if
they have a url

External reference ‘<src>’
has a URL but no hash.

303 indicator-properties Indicator objects have
both name and description
properties

Both the name and
description properties
SHOULD be present.

304 deprecated-properties certain properties which
have been deprecated are
not being used

Included property ‘<prop-
erty>’ is deprecated
within the indicated spec
version.

305 extension-description Extension Definitions
have a description prop-
erty

The ‘description’ property
SHOULD be populated.

306 extension-properties Ensure toplevel-property-
extensions include the
extension_properties
property

For extensions of the
‘toplevel- property-
extension’ type, the
‘extension_properties’
property SHOULD
include one or more
property names.

401 extensions-use custom objects, proper-
ties, and observable ex-
tensions have been im-
plemented with Extension
Definitions

Custom object type ‘<ob-
ject>’ should be imple-
mented using an extension
with an ‘extension_type’
of ‘new-sdo’.
Custom property ‘<prop-
erty>’ should be ‘imple-
mented using an extension
with an ‘extension_type’
of ‘property- extension’ or
‘toplevel-property- exten-
sion’.
Custom Cyber Observ-
able Object extension
type ‘<extension>’ should
be implemented using
an ‘extension_type’ of
‘property-extension’.

4.2. Optional Checks - STIX 2.1 23

stix2-validator Documentation, Release 3.1.4

24 Chapter 4. Checking STIX Content

CHAPTER 5

Contributing

We’re thrilled that you’re interested in contributing to the stix2-validator! Here are some things you should know:

• contribution-guide.org has great ideas for contributing to any open-source project (not just this one).

• All contributors must sign a Contributor License Agreement. See CONTRIBUTING.md in the project repository
for specifics.

• If you are planning to implement a major feature (vs. fixing a bug), please discuss with a project maintainer first
to ensure you aren’t duplicating the work of someone else, and that the feature is likely to be accepted.

Now, let’s get started!

5.1 Setting up a development environment

We recommend using a virtualenv.

1. Clone the repository. If you’re planning to make pull request, you should fork the repository on GitHub and clone
your fork instead of the main repo:

$ git clone https://github.com/yourusername/cti-stix-validator.git

2. Install develoment-related dependencies and set up git submodules:

$ cd cti-stix-validator
$ pip install -r requirements.txt
$ git submodule update --init --recursive
$ git submodule foreach -q --recursive 'git switch $(git config -f $toplevel/.gitmodules submodule.$name.branch)'

3. Install pre-commit git hooks:

$ pre-commit install

At this point you should be able to make changes to the code.

25

http://www.contribution-guide.org/
https://github.com/oasis-open/cti-stix-validator/blob/master/CONTRIBUTING.md
https://virtualenv.pypa.io/en/stable/
http://pre-commit.com/#usage

stix2-validator Documentation, Release 3.1.4

5.2 Code style

All code should follow PEP 8. We allow for line lengths up to 160 characters, but any lines over 80 characters should
be the exception rather than the rule. PEP 8 conformance will be tested automatically by Tox and Travis-CI (see
below).

5.3 Testing

Note: All of the tools mentioned in this section are installed when you run pip install -r requirements.
txt.

This project uses pytest for testing. We encourage the use of test-driven development (TDD), where you write (failing)
tests that demonstrate a bug or proposed new feature before writing code that fixes the bug or implements the features.
Any code contributions should come with new or updated tests.

To run the tests in your current Python environment, use the pytest command from the root project directory:

$ pytest

This should show all of the tests that ran, along with their status.

You can run a specific test file by passing it on the command line:

$ pytest stix2validator/test/test_<xxx>.py

To ensure that the test you wrote is running, you can deliberately add an assert False statement at the beginning
of the test. This is another benefit of TDD, since you should be able to see the test failing (and ensure it’s being run)
before making it pass.

tox allows you to test a package across multiple versions of Python. Setting up multiple Python environments is
beyond the scope of this guide, but feel free to ask for help setting them up. Tox should be run from the root directory
of the project:

$ tox

We aim for high test coverage, using the coverage.py library. Though it’s not an absolute requirement to maintain
100% coverage, all code contributions must be accompanied by tests. To run coverage and look for untested lines of
code, run:

$ pytest --cov=stix2validator
$ coverage html

then look at the resulting report in htmlcov/index.html.

All commits pushed to the master branch or submitted as a pull request are tested with Travis-CI automatically.

5.4 Adding a dependency

One of the pre-commit hooks we use in our develoment environment enforces a consistent ordering to imports. If you
need to add a new library as a dependency please add it to the known_third_party section of .isort.cfg to make sure the
import is sorted correctly.

26 Chapter 5. Contributing

https://www.python.org/dev/peps/pep-0008/
http://pytest.org
https://tox.readthedocs.io/en/latest/
http://coverage.readthedocs.io/en/latest/
https://travis-ci.org/oasis-open/cti-stix-validator

stix2-validator Documentation, Release 3.1.4

5.5 Updating the STIX JSON schemas

When updates have been made to the STIX JSON schemas repository, the schemas included in this library must also
be updated. To do so:

$ git submodule update --remote

5.5. Updating the STIX JSON schemas 27

https://github.com/oasis-open/cti-stix2-json-schemas

stix2-validator Documentation, Release 3.1.4

28 Chapter 5. Contributing

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

29

	Installation
	Usage
	As A Script
	As A Library
	STIX 2 Versions
	Additional Schemas

	Options
	Checking STIX Content
	Mandatory Checks - STIX 2.1
	Optional Checks - STIX 2.1

	Contributing
	Setting up a development environment
	Code style
	Testing
	Adding a dependency
	Updating the STIX JSON schemas

	Indices and tables

