
stix2-validator Documentation
Release 1.1.1

OASIS Open

Dec 04, 2018

Contents:

1 Installation 3

2 Usage 5
2.1 As A Script . 5
2.2 As A Library . 5
2.3 Additional Schemas . 6

3 Options 7

4 Checking Best Practices 9

5 Indices and tables 11

i

ii

stix2-validator Documentation, Release 1.1.1

The STIX Validator checks that STIX JSON content conforms to the requirements specified in the STIX 2.0 spec-
ification. In addition to checking conformance with the JSON schemas, the validator checks conformance with re-
quirements that cannot be specified in JSON schema, as well as with established “best practices.” This validator is
non-normative; in cases of conflict with the STIX 2.0 specification, the specification takes precedence.

The STIX 2.0 specification contains two types of requirements: mandatory “MUST” requirements, and recommended
“SHOULD” best practice requirements. The validator checks documents against the “MUST” requirements using
JSON schemas. Some of these mandatory requirements cannot be implemented in JSON Schema, however, so the
validator uses Python functions to check them. The “SHOULD” requirements are all checked by Python functions,
and options may be used to ignore some or all of these recommended “best practices.”

The only exception to this is the mandatory requirement that an object’s ‘type’ be one of those defined by a STIX
Object in the specification. This rules out custom objects, so this check was made optional.

The STIX Validator uses the stix2-patterns validator to check that Indicator patterns conform to the STIX Patterning
language and only reference properties valid for the objects in the pattern.

The validator also color-codes its output to make it easier to tell at a glance whether validation passed.

Contents: 1

https://github.com/oasis-open/cti-stix2-json-schemas
https://github.com/oasis-open/cti-pattern-validator

stix2-validator Documentation, Release 1.1.1

2 Contents:

CHAPTER 1

Installation

Note: The STIX 2 validator requires Python 2.7 or 3.4+.

The easiest way to install the STIX 2 validator is with pip:

$ pip install stix2-validator

Note that if you instead install it by cloning or downloading the repository, you will need to set up the submodules
before you install it:

$ git clone https://github.com/oasis-open/cti-stix-validator.git
$ cd cti-stix-validator/
$ git submodule update --init --recursive
$ python setup.py install

3

stix2-validator Documentation, Release 1.1.1

4 Chapter 1. Installation

CHAPTER 2

Usage

2.1 As A Script

The validator comes with a bundled script which you can use to validate a JSON file containing STIX content:

$ stix2_validator <stix_file.json>

2.2 As A Library

You can also use this library to integrate STIX validation into your own tools. You can validate a JSON file:

from stix2validator import validate_file, print_results

results = validate_file("stix_file.json")
print_results(results)

You can also validate a JSON string, and check if the input passed validation:

from stix2validator import validate_string, print_results

stix_json_string = "..."
results = validate_string(stix_json_string)
if results.is_valid:

print_results(results)

If your STIX is already in a Python dictionary (for example if you have already run json.loads()), use
validate_instance() instead:

import json
from stix2validator import validate_instance, print_results

(continues on next page)

5

stix2-validator Documentation, Release 1.1.1

(continued from previous page)

stix_json_string = "..."
stix_obj = json.loads(stix_json_string)
results = validate_instance(stix_obj)
if results.is_valid:

print_results(results)

You can pass a ValidationOptions object into validate_file(), validate_string(), or
validate_instance() if you want behavior other than the default:

from stix2validator import ValidationOptions

options = ValidationOptions(strict=True)
results = validate_string(stix_json_string, options)

2.3 Additional Schemas

The validator uses the STIX 2 JSON schemas as the basis for its validation, but you can also validate with your
own additional schemas. This can help if you want to validate STIX content using custom objects, properties, or
observables.

To do this use the --schema-dir argument:

$ stix2_validator --schema-dir /path/to/my/schemas <stix_file.json>

6 Chapter 2. Usage

https://github.com/oasis-open/cti-stix2-json-schemas

CHAPTER 3

Options

These are the different options that can be set, whether the validator is used as a command-line script or as a Python li-
brary. When using the validator as a library, these options can be passed as parameters to the ValidationOptions
constructor.

Script Library Description
FILES files A whitespace separated list of STIX files or directories of STIX files to

validate.
-r, --recursive recursiveRecursively descend into input directories.
-s SCHEMA_DIR,
--schemas
SCHEMA_DIR

schema_dirCustom schema directory. If provided, input will be validated against
these schemas in addition to the STIX schemas bundled with this script.

-v, --verbose verbose Print informational notes and more verbose error messages.
-q, --silent silent Silence all output to stdout.
-d DISABLED,
--disable
DISABLED, --ignore
DISABLED

disabled A comma-separated list of recommended best practice checks to skip.
By default, no checks are disabled. Example: –disable 202,210

-e ENABLED,
--enable ENABLED,
--select ENABLED

enabled A comma-separated list of recommended best practice checks to enable.
If the –disable option is not used, no other checks will be run. By default,
all checks are enabled. Example: –enable 218

--strict strict Treat warnings as errors and fail validation if any are found.
--strict-types strict_typesEnsure that no custom object types are used, only those defined in the

STIX specification.
--strict-properties strict_propertiesEnsure that no custom properties are used, only those defined in the

STIX specification.
--no-cache no_cache Disable the caching of external source values.
--refresh-cache refresh_cacheClears the cache of external source values, then during validation down-

loads them again.
--clear-cache clear_cacheClear the cache of external source values after validation.

For the list of checks that can be used with the “enabled” or “disabled” options, see the Best Practices page.

7

best-practices.rst

stix2-validator Documentation, Release 1.1.1

8 Chapter 3. Options

CHAPTER 4

Checking Best Practices

The validator will always validate input against all of the mandatory “MUST” requirements from the spec. By default
it will issue warnings if the input fails any of the “SHOULD” recommendations, but validation will still pass. To turn
these “best practice” warnings into errors and cause validation to fail, use the --strict option with the command-
line script, or create a ValidationOptions object with strict=True when using the library.

You cannot select which of the “MUST” requirement checks will be performed; all of them will always be performed.
However, you may select which of the “SHOULD” checks to perform. Use the codes from the table below to enable
or disable these checks. For example, to disable the checks for the report label and tool label vocabularies, use
--disable 218,222 or disabled="218,222". All the other checks will still be performed. Conversely, to
only check that custom property names adhere to the recommended format but not run any of the other “best practice”
checks, use --enable 103 or enabled="103".

Enabling supersedes disabling. Simultaneously enabling and disabling the same check will result in the validator
performing that check.

Some checks access Internet resources to determine valid values for certain properties. For instance, the ‘mime-
type’ check accesses the IANA’s list of registered MIME types. These web requests are cached to conserve band-
width, will expire after one week, and are stored in a file called ‘cache.sqlite’ in the same directory the script is run
from. The cache can be refreshed manually with the --refresh-cache or refresh_cache=True, or cleared
with --clear-cache or clear_cache=True. This caching can be disabled entirely with --no-cache or
no_cache=True.

Recommended Best Practice Check Codes

Code Name Ensures. . .
1 format-checks all 1xx checks are run
101 custom-prefix names of custom object types, properties, observable objects, observable object properties, and observable object extensions follow the correct format
102 custom-prefix-lax same as 101 but more lenient; no source identifier needed in prefix
111 open-vocab-format values of open vocabularies follow the correct format
121 kill-chain-names kill-chain-phase name and phase follow the correct format
141 observable-object-keys observable object keys follow the correct format
142 observable-dictionary-keys dictionaries in cyber observable objects follow the correct format
149 windows-process-priority-format windows-process-ext’s ‘priority’ follows the correct format

Continued on next page

9

stix2-validator Documentation, Release 1.1.1

Table 1 – continued from previous page
150 hash-length keys in ‘hashes’-type properties are not too long
2 approved-values all 2xx checks are run
201 marking-definition-type marking definitions use a valid definition_type
202 relationship-types relationships are among those defined in the specification
203 duplicate-ids objects in a bundle with duplicate IDs have different modified timestamps
210 all-vocabs all of the following open vocabulary checks are run
211 attack-motivation certain property values are from the attack_motivation vocabulary
212 attack-resource-level certain property values are from the attack_resource_level vocabulary
213 identity-class certain property values are from the identity_class vocabulary
214 indicator-label certain property values are from the indicator_label vocabulary
215 industry-sector certain property values are from the industry_sector vocabulary
216 malware-label certain property values are from the malware_label vocabulary
218 report-label certain property values are from the report_label vocabulary
219 threat-actor-label certain property values are from the threat_actor_label vocabulary
220 threat-actor-role certain property values are from the threat_actor_role vocabulary
221 threat-actor-sophistication certain property values are from the threat_actor_sophistication vocabulary
222 tool-label certain property values are from the tool_label vocabulary
241 hash-algo certain property values are from the hash-algo vocabulary
242 encryption-algo certain property values are from the encryption-algo vocabulary
243 windows-pebinary-type certain property values are from the windows-pebinary-type vocabulary
244 account-type certain property values are from the account-type vocabulary
270 all-external-sources all of the following external source checks are run
271 mime-type file.mime_type is a valid IANA MIME type
272 protocols certain property values are valid IANA Service and Protocol names
273 ipfix certain property values are valid IANA IP Flow Information Export (IPFIX) Entities
274 http-request-headers certain property values are valid HTTP request header names
275 socket-options certain property values are valid socket options
276 pdf-doc-info certain property values are valid PDF Document Information Dictionary keys
301 network-traffic-ports network-traffic objects contain both src_port and dst_port
302 extref-hashes external references SHOULD have hashes if they have a url

10 Chapter 4. Checking Best Practices

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

11

	Installation
	Usage
	As A Script
	As A Library
	Additional Schemas

	Options
	Checking Best Practices
	Indices and tables

